Turbulent intensity effect on low Reynolds number airfoil wake

Wang S¹, Zhou Y^{1,2}, Alam M M², Yang H X³

¹Department of Mechanical Engineering, the Hong Kong Polytechnic University, Hong Kong ²Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China

³Department of Building Services Engineering, the Hong Kong Polytechnic University, Hong Kong

INTRODUCTION

The flow around an airfoil at a chord Reynolds number $Re_c < 10^5$ is of interest in connection with a variety of engineering applications including the design of micro air vehicles and wind turbines. Hence, it is not surprising that the airfoil flow at small Re_c has attracted a surge attention of researchers. Previous investigations found that at $Re_c > 10^4$ the separated shear layer reattaches on the airfoil surface, which enhances the airfoil lift. In contrast, at $Re_c < 10^4$ the separated shear layer does not reattach to the airfoil surface, adversely affecting the lift. Investigations on the aerodynamics of airfoils at $Re_c < 10^4$ are very few. There is also a lack of data in the literature on how the turbulence level (T_u) of the oncoming flow affects the aerodynamics of the airfoil particularly at $Re_c < 10^4$. The objective of this work was (i) to investigate the effect of T_u on the force and the wake of a NACA0012 airfoil at $Re_c = 5.3 \times 10^3$ and 2×10^4 and (ii) to classify Re_c -dependent flow structures based on maximum lift $(C_{L,max})$ and on inherent features of the shear/boundary layer.

EXPERIMENTS

Experiments were performed in a closed-loop water tunnel, with a test section of 0.3 m (width) \times 0.6 m (height) \times 2.4 m (length). The water speed in the test section ranges from 0.05 m/s to 4 m/s. A NACA0012 airfoil, with a span length of s = 0.27 m and a chord length of c = 0.1 m, was used as the test model and mounted horizontally in the test section. A grid placed at the upstream side of the airfoil model was used to generate turbulence in the free-stream. A variation in T_u from 0.6% to 6.0% was achieved by changing the distance between the grid and airfoil. While the lift and drag coefficients (C_D and C_L) of the airfoil were measured using a load cell, the flow field was estimated using particle image velocimetry techniques. Furthermore, a LIF flow visualization system was used to visualize the airfoil wake and shear layer behaviors. $C_{L,max}$ data from the literature are collected to classify Re_c -dependent flow structures.

RESULTS AND DISCUSSION

Four Rec regimes are identified for the first time, based on the characteristics of $C_{L,\max}$ dependence on *Re_c*, i.e., ultra-low (< 10^4), low ($10^4 \sim 3 \times 10^5$), moderate ($3 \times 10^5 \sim 5 \times 10^6$) and high (> 5×10^6), see Fig. 1. Each of them involves different flow patterns and stall types which are mostly connected to the shear/boundary layer behaviors. While the shear layer is laminar in the ultra-low Re_c regime, shear layer transition followed by a reattachment occurs in both low and moderate Re_c regimes. The low Re_c regime corresponds to a relatively longer separation bubble than the moderate Re_c regime. The boundary layer transits in the high Re_c regime and no reattachment occurs. Attention is given largely to the first two regimes in this work.

Fig. 1 Dependence of C_{Lmax} on Re_c of NACA 0012 airfoils. (+Sunada *et al.* (2002); ■ Chen and Choa (1999); × Akbari and Price (2003); ◆ Lee and Gerontakos (2004); ▲ Wong and Kontis (2007); ◇ Schlüter (2009); □ Cleaver *et al.* (2011); ○ Grager *et al.* (2011); △ Sant and Ayuso (2013))

Fig. 2 illustrates that at Re_c =5.3×10³ (ultra-low regime) the airfoil stall is absent for $T_u = 0.6\%$ but occurs for $T_u = 2.6\%$ and 6.0%, resulting in a marked difference in C_L and a considerably improved lift-to-drag (C_L/C_D) ratio. The maximum C_L can be increased by 52%, while the maximum C_L/C_D can be improved by 45%.

LIF flow visualization photographs shown in Fig. 3 reveal that the increased T_u results in a postponement of the boundary layer separation (Figs. 3a, d), and occurrence of transition in the shear layer (Figs. 3b, e). The latter brings a successful reattachment of shear layer, responsible for the improved the lift.

l 6 5 0.8 4 0.6 $\frac{C_L}{C_D}$ 3 C_L 0.4 T_{u} 2 -0-0.6%<u>→</u>2.6% 0.2 ♦ 6.0% 1 (a) (b) 0 10 15 20 25 30 5 5 10 15 20 25 30 0 a (°) α (°)

Fig. 2. Dependence on α of C_L (a), C_L/C_D (b) at different T_u . $Re_c = 5.3 \times 10^3$. Where α is the angle of attack

CONCLUSIONS

The work leads to the following conclusions:

- (1) Four Re_c regimes are identified on the basis of $C_{L,\max}$ and Boundary/shear layer characteristics, i.e., ultra-low, low, moderate and high Re_c regimes.
- (2) A remarkable influence of T_u is observed at $Re_c = 5.3 \times 10^3$ (ultra-low Re_c regime), increasing C_L and C_L/C_D by 52% and 45%, respectively. Stall does not occur at $T_u = 0.6\%$ but does at $T_u = 2.6\%$ and 6.0%.
- (3) The critical Reynolds number $Re_{c,cr}$ that divides the ultra-low and low Re_c regimes decreases from 1×10^4 to less than 5.3×10^3 as T_u increases from 0.6% to 6.0%.

Fig. 3 Typical photographs captured in LIF flow visualization for various α .

(4) While increasing T_u delays the separation of the boundary layer due to the enhanced mixing ability, increasing Re_c shows an opposite effect, promoting the separation.

Keywords: low Reynolds number, turbulent intensity, airfoil wake, lift force, stall